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Compactness theorems for gradient Ricci solitons
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Abstract

In this paper, we prove a compactness theorem for gradient Ricci solitons. Let (Mα, gα) be a sequence
of compact gradient Ricci solitons of dimension n ≥ 4, whose curvatures have uniformly bounded L

n
2

norms, whose Ricci curvatures are uniformly bounded from below, with uniformly lower bounded volume
and with uniformly upper bounded diameter; then there must exist a subsequence (Mα, gα) converging to a
compact orbifold (M∞, g∞) with finitely many isolated singularities, where g∞ is a gradient Ricci soliton
metric in an orbifold sense.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of convergence of Riemannian manifolds was introduced by Gromov [8]. As
is now well known, the Cheeger–Gromov convergence theorem [5,8,9,13,17] implies that the
space µ(Λ, ν, D) of compact Riemannian n-manifolds with sectional curvature |K | ≤ Λ,
volume ≥ ν > 0 and diameter ≤ D, is precompact in the C1,α topology. There has been
increasing interest lately in compactness theorems of Riemannian manifolds under various
geometric assumptions [1,2,7,14,20,21]. For instance, in [1] and [14], the authors show that if
{(Mα, gα)} is a sequence of Einstein manifolds of dimension n satisfying: diam(Mα, gα) ≤ C ;∫

Mα
‖Rm(gα)‖

n
2
gα dVgα ≤ C ; and Vol(Mα, gα) ≥

1
C , where C is a uniform constant, then there
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is a subsequence of {(Mα, gα)} that converges to an Einstein orbifold with finitely many isolated
singular points. Also see [20] and [21] for the case of Kähler–Einstein manifolds.

The Ricci flow equation

d
dt

gi j = −2Ri j (1.1)

had been introduced by Hamilton in his seminal paper [10]. Natural questions that arise in
studying the Ricci flow equation are under what conditions a solution will exist for all times
and, if there exists a limit of the solution when we approach infinity, then how we can describe
the metric obtained in the limit. In the case of dimension three with positive Ricci curvature
and dimension four with positive curvature operator we know (due to Hamilton [10,11]) that
the solutions of the Ricci flow in both cases exist for all times, converging to Einstein metrics.
In general, we cannot expect to get an Einstein metric in the limit, but we can expect to get
solitons in the limit. In brief, a soliton is just a solution to the Ricci flow (1.1) which moves by
diffeomorphisms and also shrinks or expands by a factor at the same time. Such a solution is
called a homothetic shrinking or expanding Ricci soliton. The equation for a homothetic Ricci
soliton is

2λgi j − 2Ri j = gik∇ jv
k
+ g jk∇iv

k, (1.2)

where λ is the homothetic constant, v is the vector field induced by the 1-parameter family of
diffeomorphisms. For λ > 0 the soliton is shrinking, for λ < 0 it is expanding, and the case
λ = 0 is a steady Ricci soliton. If the vector field v is the gradient of a function u we say that the
soliton is a gradient Ricci soliton; thus

λgi j − Ri j = ∇i∇ j u, (1.3)

is the gradient Ricci soliton equation. The Einstein metric can be considered as a Ricci soliton
when the vector field v is zero.

In this paper, we want to consider the compactness result for Ricci solitons. When the
underlying manifolds are closed (compact, without boundary), one can easily check that the
steady and expanding Ricci solitons are in fact Einstein metrics. So, we mainly consider the
shrinking case. We prove the following theorem.

Theorem 1.1. Let (Mα, gα) be a sequence of shrinking gradient Ricci solitons of dimension
n ≥ 4, i.e., satisfying the following equation:

gα − Ric(gα) = ∇duα, (1.4)

such that
(1) Ric(gα) ≥ −C1gα;
(2) diam(Mα, gα) ≤ C2;
(3) Vol(Mα, gα) ≥ C3;

(4)
∫

Mα
|Rm|

n
2 dVgα ≤ C4;

for some uniform positive constants C1, C2, C3, C4. Then there is a subsequence (Mα, gα)
converging to (M∞, g∞) in the Cheeger–Gromov sense, where M∞ is an orbifold with finitely
many isolated singularities and g∞ is a Ricci soliton in an orbifold sense.

Further, if n is odd, there are no singular points and (M∞, g∞) is a smooth gradient
Ricci soliton which is diffeomorphic to Mα , for α sufficiently large. In this case, (Mα, gα)
(sub)converges smoothly to (M∞, g∞).
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Remark 1.2. An n-dimensional orbifold M∞ is a topological space satisfying: each point x in
M∞ admits an open neighborhood Ux homeomorphic to Bn/Γx , where Bn is the unit disc in
Rn and Γx ⊂ O(n) is a finite group and those Ux are patched together by smooth transition
functions. Any point x with Γx trivial is called a regular point of M∞. In particular, M∞ is a
manifold near such a regular point. Denote by Reg(M∞) the set of all regular points. All other
points are singular points of M∞, i.e. Sing(M∞) = M∞\Reg(M∞). We will confine ourselves
to the special case where Sing(M∞) consists of isolated points. A Ricci soliton g∞ in an orbifold
sense is just the one on Reg(M∞) such that for each x ∈ Sing(M∞) if πx : Bn

→ Ux is the
local uniformization, then there is a diffeomorphism ϕ of Bn such that ϕ∗π∗

x g∞ can be extended
smoothly to a gradient Ricci soliton C∞-metric on Bn .

In Theorem 1.1, we say that (Mα, gα) converge to an orbifold (M∞, g∞) in the Cheeger–
Gromov sense, if for any compact subset K ⊂ M∞\Sing(M∞) there are compact sets Kα ⊂ Mα

and diffeomorphisms φα : K → Kα such that φ∗
αgα converge to g∞ in C∞ topology.

Recall the formula of Avez [3] expressing the Euler characteristic χ(M) of a compact
4-manifold in terms of a curvature integral:

χ(M) =
1

8π2

∫
M

|Rm|
2
− 4|Ric|2 + R2, (1.5)

where R is the scalar curvature. Clearly, a bound on
∫

M |Ric|2 and the second Betti number
b2(M) implies a bound on

∫
M |Rm|

2. The Bishop comparison theorem implies there is a upper
bound of volume imposed by the lower bound of Ricci curvature and the upper bound of diameter.
On the other hand, in Section 2, we will prove that when g is a gradient Ricci soliton, the lower
bound of Ricci curvature, the upper bound of diameter, and the lower bound of volume imply an
upper bound of scalar curvature, then we have an upper bound of Ricci curvature. So, for Ricci
solitons, lower bounds of Ricci curvature and volume, an upper bound of diameter, and a bound
of b2(M) imply a bound on

∫
M |Rm|

2. We have the following corollary.

Corollary 1.3. Let (Mα, gα) be a sequence of shrinking gradient Ricci solitons of dimension 4,
such that

(1) Ric(gα) ≥ −C1gα;
(2) diam(Mα, gα) ≤ C2;
(3) Vol(Mα, gα) ≥ C3;
(4) b2(Mα) ≤ C4,

for some uniform positive constants C1, C2, C3, C4. Then there is a subsequence (Mα, gα)
converging to (M∞, g∞) in the Cheeger–Gromov sense, where M∞ is an orbifold with finitely
many isolated singularities and g∞ is a Ricci soliton in an orbifold sense.

More recently, Cao and Sesum [6] proved a compactness result for the Kähler Ricci solitons,
where the upper bound of diameter can be replaced by a uniform lower bound of Perelman’s
functional µ(g, 1

2 ) [15]. They point out that by the same proof as in [16] they can show that,
in the Kähler Ricci solitons case, the uniform lower bound of Ricci curvature, the lower bound
of Perelman’s functional µ(g, 1

2 ), and the Euclidean volume growth imply a uniform bound of
the diameter. In Section 2, we will show that, for a sequence of gradient Ricci solitons, uniform
lower bounds of Ricci curvature and volume, and a uniform bound of diameter will give a uniform
bound of Perelman’s functional µ(g, 1

2 ).
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The key analytic tool in this paper is Uhlenbeck’s [22] Yang–Mills estimate for curvatures of
Yang–Mills connections. The method for proving Theorem 1.1 is similar to that in Anderson’s
paper [1] for the Einstein case. The main point is obtaining the ε-regularity estimate for the Ricci
soliton which says that smallness of the L

n
2 norm of curvature implies a pointwise bound on

the curvature. Moreover, unlike in the Einstein case, we should obtain a C1 bound for potential
functions uα . It is well known [23] that lower bounds for the Ricci curvature and volume and
an upper bound on the diameter give a lower bound for the Sobolev constant Cs of compact
manifold M ,

‖u‖ 2n
n−2

≤
1

Cs
‖du‖2 + Vol(M)−

2
n ‖u‖2, (1.6)

for any Lipschitz function u on M . By the above Sobolev inequality, we can use the Moser’s
iteration argument to obtain the above estimates.

The organization of this paper is as follows. In Section 2, we deduce some estimates; in
particular, we obtain the C1 estimates for functions uα , and a uniform bound for the Ricci
curvature and Perelman’s function. In Section 3, we obtain the ε-regularity estimate for the Ricci
soliton. In Sections 4 and 5, we give the proof of Theorem 1.1.

2. Preliminary results

Let M be a compact manifold without boundary, and g be a gradient Ricci soliton, i.e. one
that satisfies formula (1.3); here we assume that u satisfies

(2π)−
n
2

∫
M

e−u dVg = 1 (2.1)

and Ric(g) ≥ −C1g; diam(M, g) ≤ C2; Vol(M, g) ≥ C3 > 0.
From formula (2.1), we have

inf
x∈M

u ≤ ln Vol(M, g)−
n

2
ln(2π). (2.2)

On the other hand, the Bishop comparison theorem implies there is an upper bound of volume
imposed by a lower bound of Ricci curvature and an upper bound of the diameter. So, there exists
a constant C5 depending only on C1 and C2 such that

inf
x∈M

u ≤ C5. (2.3)

Let f = e−
u
2 ; then we have

4 f 2
= e−u

|∇u|
2
− e−u

4u

= e−u
|∇u|

2
+ e−u(R − nλ)

≥ 4|∇ f |
2
− n f 2(C1 + λ). (2.4)

From the above Bochner-type inequality and the Sobolev inequality (1.6), using Moser’s iteration
argument ([24], Proposition 2.2), we have the following mean value inequality:

sup
x∈M

f ≤ C6

(∫
M

e−udVg

) 1
2

, (2.5)
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where C6 depends only on C1, C2 and C3. So, we obtain a lower bound of u, i.e. there is a
constant C7 depending only on C1, C2 and C3 such that

inf
M

u ≥ −C7. (2.6)

From the Ricci soliton equation and the lower bound of Ricci curvature, we have

∇du ≤ (C1 + λ)g. (2.7)

Let P, Q ∈ M be such that u(P) = infx∈M u, u(Q) = supx∈M u, and let γ : [0, d] → M be a
minimizing geodesic connecting P and Q, i.e. γ (0) = P , γ (d) = Q; here d = dist(P, Q). We
have

du(γ (t))

dt
= 〈∇u, γ ′

〉γ (t) − 〈∇u, γ ′
〉p

=

∫ t

0

∂

∂s
(〈∇u, γ ′

〉γ (s)) ds

=

∫ t

0
∇γ ′(s)〈∇u, γ ′

〉 ds

=

∫ t

0
(∇du)(γ ′, γ ′) ds

≤ (C1 + λ)t,

and

u(Q)− u(P) =

∫ d

0

du(γ (t))

dt
dt ≤

∫ d

0
(C1 + λ)tdt =

1
2
(C1 + λ)d2.

From the above inequality and (2.3), we know that there exists a constant C8 depending only
on C1, C2, and C3, such that

sup
x∈M

u ≤ C8. (2.8)

Next, we want to obtain the estimate of |∇u|. From Eq. (1.3), we have

∇i R jk − ∇ j Rik = −Ri jkl∇lu. (2.9)

Taking a trace on j and k, and using the second Bianchi identity we have

∇i R − 2Ri j∇ j u = 0, (2.10)

and

∇i (|∇u|
2
+ R − 2λu) = 0. (2.11)

So, there is a constant C9 such that

|∇u|
2
+ R − 2λu = C9. (2.12)

As above, we let P ∈ M be the minimum point of u; then |∇u|(P) = 0, 4u(P) ≥ 0, and
R(P) = nλ− 4u(P) ≤ nλ. We have

C9 = |∇u|
2(P)+ R(P)− 2λu(P) ≤ nλ− 2λu(P). (2.13)
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From (2.12), we have

|∇u|
2

= −R + 2λu + C9 ≤ nλ+ 2λ
(

u − inf
x∈M

u

)
− R. (2.14)

When the constant λ ≤ 0, from the above inequality, we have

R ≤ R + |∇u|
2

≤ nλ, (2.15)

and then 4u = nλ − R ≥ 0. Since manifold M is compact, u must be a constant. So we have
the following proposition.

Proposition 2.1. Let g be a steady or expanding gradient soliton over compact manifold M;
then g must be a Einstein metric.

When λ is a positive constant, from the estimate (2.8) we have

|∇u|
2

≤ nλ+ 2λ
(

sup
x∈M

u − inf
x∈M

u

)
− R ≤ C10, (2.16)

where C10 is a constant depending only on C1, C2, C3 and λ.
Let (Mα, gα) be a sequence of shrinking Ricci solitons satisfying conditions (1), (2) and (3) in

Theorem 1.1. From (2.6), (2.8) and (2.16), we obtain a uniform C1-bound of uα; from (2.8) and
(2.14); we also obtain a uniform upper bound of scalar curvature, i.e. we obtain the following
lemma.

Lemma 2.2. Let (Mα, gα) be a sequence of shrinking Ricci solitons (λ = 1) satisfying
conditions (1), (2) and (3) in Theorem 1.1, and uα satisfying the constraint (2.1); then there
are positive constants C11, C12 depending only on C1, C2 and C3 such that

|uα|C1 ≤ C11 (2.17)

and

R(gα) ≤ C12. (2.18)

In the next part of this section, we will give a uniform bound of Perelman’s functional µ(g, 1
2 )

[15] for a sequence of shrinking Ricci solitons (Mα, gα) satisfying conditions (1), (2) and (3) in
Theorem 1.1. In [15], Perelman has introduced a functional satisfying

W (g, ϕ, τ ) = (4πτ)−
n
2

∫
M

e−ϕ
[τ(R + |∇ϕ|

2)+ f − n] dVg, (2.19)

under the constraint

(4πτ)−
n
2

∫
M

e−ϕ dVg = 1. (2.20)

Then he defined the functional

µ(g, τ ) = inf W (g, ·, τ ), (2.21)

where τ > 0, and inf is taken over all functions satisfying the constraint (2.20).



X. Zhang / Journal of Geometry and Physics 56 (2006) 2481–2499 2487

Lemma 2.3. If (M, g) is a shrinking gradient Ricci soliton, i.e.

g − Ric(g) = ∇du,

where u satisfies the constraint (2.1), then u is a minimizer of Perelman’s functional W with
respect to metric g and τ =

1
2 .

Proof. Let ψ(t) be the 1-parameter family of diffeomorphisms that come from the vector field
∇u, and let g(t) = ψ∗g; then g(t) satisfies the following Ricci flow equation:

d
dt

g(t) = −2Ric(g(t))+ 2g(t). (2.22)

In order to use Perelman’s monotonicity formula [15], we scale the metric via g̃(s) =

C(s)g(t (s)), where C(s) = 1 − 2s, t (s) = −
1
2 ln(1 − 2s). Then we have

d
ds

g̃(s) = −2Ric(g̃(s)), (2.23)

and

µ

(
g(t),

1
2

)
= µ

(
g̃(s(t)),

1
2

− s(t)

)
. (2.24)

Let ϕ(0) be a minimizer of W with respect to metric g(0) = g and τ =
1
2 . Then function

ϕ(t) = ψ∗ϕ(0) is a minimizer of W with respect to metric g(t) since

µ

(
g(t),

1
2

)
≤ W

(
g(t), ϕ(t),

1
2

)
= W

(
g(0), ϕ(0),

1
2

)
= µ

(
g(0),

1
2

)
≤ µ

(
g(t),

1
2

)
, (2.25)

where the last inequality comes from Perelman’s monotonicity formula for µ(g̃(s), 1
2 − s).

Therefore, we have

0 =
d
dt

W

(
g(t), ϕ(t),

1
2

)
= (2π)

1
2

∫
M

e−ϕ(t)
|Ri j + ϕi j − gi j |

2 dVt , (2.26)

which implies 4ϕ(t) = n − R(t) = 4(u ◦ψ(t)). Since M is compact and both functions satisfy
the constraint (2.1), we have ϕ(t) = u ◦ ψ(t). �

For our sequence of shrinking gradient Ricci solitons (Mα, gα), the previous lemma tells us
that every uα is a minimizer of W (gα, ·, 1

2 ) and therefore satisfies [15]

4uα −
1
2
|∇uα|

2
+

1
2

R(gα)+ uα − n = µ

(
gα,

1
2

)
. (2.27)

By 4uα = n − R(gα) and Lemma 2.2, we obtain a uniform bound of µ(gα, 1
2 ).

Proposition 2.4. Let (Mα, gα) be a sequence of shrinking Ricci solitons (λ = 1) satisfying
conditions (1), (2) and (3) in Theorem 1.1, and let uα satisfy the constraint (2.1); then there is a
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constant C13 depending only on C1, C2 and C3 such that∣∣∣∣µ(gα,
1
2

)∣∣∣∣ ≤ C13. (2.28)

Remark 2.5. From Lemma 2.2, we get scalar curvature bounds for Ricci solitons satisfying
conditions (1), (2) and (3) in Theorem 1.1. Since Ricci curvature have a lower bound, we can
also get an upper bound for the Ricci curvature. If the dimension n = 3, we know that Ricci
curvature bounds imply Riemannian curvature bounds. On the other hand, by Shi’s estimates
[18] we can get uniform bounds for higher derivatives of Riemannian curvature; then using the
Gromov–Cheeger compactness theorem, we can easily get the following compactness theorem
for Ricci solitons.

Proposition 2.6. Let (Mα, gα) be a sequence of shrinking gradient Ricci solitons of dimension
n = 3, such that

(1) Ric(gα) ≥ −C1gα;
(2) diam(Mα, gα) ≤ C2;
(3) Vol(Mα, gα) ≥ C3 > 0;

for some uniform constants C1, C2, C3. Then there is a subsequence (Mα, gα) converging to
(M∞, g∞) in C∞ topology, and (M∞, g∞) is a smooth gradient Ricci soliton.

3. ε-Regularity for Ricci solitons

Let (M, g) be a shrinking gradient Ricci soliton. Choose a normal coordinate system on the
point considered; by direct calculation, we have

4Ri jkl = ∇m∇m Ri jkl

= −∇m∇k Ri jlm − ∇m∇l Ri jmk

= −∇k∇m Ri jlm − ∇l∇m Ri jmk + Q(Rm)i jkl

= ∇k∇m Rmli j − ∇m∇l Rmki j + Q(Rm)i jkl

= ∇k∇i Rl j − ∇k∇ j Rli − ∇l∇i Rk j + ∇l∇ j Rki + Q(Rm)i jkl

= ∇k(Rmli j∇mu)− ∇l(Rmki j∇mu)+ Q(Rm)i jkl

= ∇k Rmli j∇mu + Rmli j∇k∇mu − ∇l Rmki j∇mu

− Rmki j∇l∇mu + Q(Rm)i jkl , (3.1)

where we have used the second Bianchi identity, the Ricci identity, and formula (2.9), Q(Rm)
denotes a quadratic express in the curvature tensor. In shorthand form, we write the above identity
as

4Rm = ∇Rm ∗ ∇u + Rm ∗ g + Rm ∗ Ric + Rm ∗ Rm. (3.2)

Then, we have

4|Rm|
2

= 2|∇Rm|
2
+ 2〈4Rm,Rm〉

≥ 2|∇Rm|
2
− 4|∇Rm||∇u||Rm| − C14|Rm|

2
− C14|Rm|

3, (3.3)

where C14 is a positive constant depending only on dimension n. By using the estimate (2.17)
and the Kato inequality, we get
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4|Rm|
2

≥ (2 − θ)|∇|Rm||
2
− C(θ)|Rm|

2
− C14|Rm|

3. (3.4)

Next, we use Moser’s iteration argument to deduce the following mean value inequality.

Lemma 3.1. Let (M, g) be a compact Riemannian manifold, and f be a Lipschitz function
satisfying

f 4 f ≥ −θ1|∇ f |
2
− θ2 f 2

− θ3 f 3, (3.5)

in the weak sense. Suppose that θ1 ≤
1
4 ; then there exists a constant ε depending only on the

dimension of M, θ3 and the lower bound of the Sobolev constant Cs so that if∫
BP (2r)

f
n
2 dvg ≤ ε, (3.6)

then

sup
BP( r

2 )
f ≤ C∗

(
1 +

1

r2

)(∫
BP (r)

f
n
2 dvg

) 2
n

, (3.7)

where C∗ depends only on the dimension of M, θ2, θ3, the lower bound of Vol(M) and the
Sobolev constant Cs .

Proof. Multiplying η2 f q−1 by (3.5), and integrating, yields

4θ1

q2

∫
M
η2

|∇ f
q
2 |

2
+ θ2

∫
M
η2 f q

+ θ3

∫
M
η2 f q+1

≥ −

∫
M
η2 f q−1

4 f

=
4
q

∫
M
η f

q
2 〈∇η,∇ f

q
2 〉 +

4(q − 1)

q2

∫
M
η2

|∇ f
q
2 |

2

≥ −
2

q − 1

∫
M

f q
|∇η|2 +

2(q − 1)

q2

∫
M
η2

|∇ f
q
2 |

2, (3.8)

where q ≥ 2 and η is a nonnegative cut-off function that we will choose later. If we suppose that
θ1 ≤

1
4 , from the above inequality, we have

(q − 1)

q2

∫
M
η2

|∇ f
q
2 |

2
≤

2
q − 1

∫
M

f q
|∇η|2 + θ2

∫
M
η2 f q

+ θ3

∫
M
η2 f q+1. (3.9)

Using the Sobolev inequality (1.6), and letting µ =
n

n−2 , we obtain{∫
M
(η f

q
2 )2µ

} 1
µ

≤
2

C2
s

∫
M

|∇(η f
q
2 )|2 + 2Vol(M)−

4
n

∫
M
η2 f q

≤
2

C2
s

{∫
M
η2

|∇ f
q
2 |

2
+

∫
M

f q
|∇η|2

}
+ 2Vol(M)−

4
n

∫
M
η2 f q

≤
2θ3q2

C2
s (q − 1)

∫
M
η2 f q+1

+
6q2

C2
s (q − 1)2

∫
M

f q
|∇η|2

+

(
2θ2q2

C2
s (q − 1)

+ 2Vol(M)−
4
n

)∫
M
η2 f q . (3.10)
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By the Hölder inequality, we have∫
M
η2 f q+1

≤

(∫
Suppη

f
n
2

) 2
n
{∫

M
(η f

q
2 )2µ

} 1
µ

. (3.11)

Take ε < {
(n−2)C2

s
2θ3n2 }. Let q =

n
2 and let η be a cut-off function with compact support in

BP (2r), equal to 1 on BP (r) and such that |∇η| ≤
2
r ; from the above inequalities, we get{∫

BP (r)
f

n
2µ

} 1
µ

≤

(
48n2

C2
s (n − 2)2

1

r2 +
4n2

C2
s (n − 2)2

θ2 + 4Vol(M)−
4
n

)∫
BP (2r)

f
n
2 . (3.12)

In the next part of the proof, we choose cut-off functions η with compact support in BP (r),
and equal to 1 on BP (

r
2 ). Using the Hölder inequality again, we get∫

M
η2 f q+1

≤

{∫
BP (r)

f
n
2µ

} 2
nµ
(∫

M
(η f

q
2 )2ν

) 1
ν

(3.13)

where ν =
n
2µ

n
2µ−1 =

n2

n2−2n+4
. Using the Young inequality, we have

(∫
M
(η f

q
2 )2ν

) 1
ν

≤ δ

(∫
M
(η f

q
2 )2µ

) 1
µ

+ C(n)δ−
n−2

2

∫
M
η2 f q , (3.14)

for small δ.
Setting δ =

1
2 {
∫

BP (r)
f

n
2µ}

2
nµ C2

s (q−1)
2θ3q2 , from (3.10), (3.13) and (3.14) we have

{∫
M
(η2 f q)µ

} 1
µ

≤ C15qn
∫

M

((
1 +

1

r2

)
η2

+ |∇η|2
)

f q , (3.15)

where C15 is a positive constant depending only on θ2, θ3, the dimension of M , the lower bound
of Vol(M) and the Sobolev constant.

Set r
2 ≤ r2 < r1 ≤ r , and let η ∈ C∞

0 (BP (r1)) be the cut-off function with the property that
η = 1 in BP (r2) and |∇η| ≤

2
r1−r2

. From (3.15), we have(∫
BP (r2)

f qµ
) 1
µ

≤ 4C15qn
(

1 +
1

r2 +
1

(r1 − r2)2

)∫
BP (r1)

f q . (3.16)

Let Ri =
r
2 +

r
2 2−i , qi =

n
2µ

i ; applying (3.16) to r1 = Ri , r2 = Ri+1, q = qi , we have(∫
BP (Ri+1)

f
n
2µ

i+1
)µ−(i+1)

≤

(
64C15

(
1 +

1

r2

)
n

2

)µ−i

(2µ)n·iµ−i
(∫

Ri

f
n
2µ

i
)µ−i

.

(3.17)

Observe that limi→∞ Ri =
r
2 , and iterating the above inequality, we conclude that

sup
BP( r

2 )
f

n
2 ≤ C16

(
1 +

1

r2

) n
2
∫

Bp(r)
f

n
2 . � (3.18)

Let θ =
1
2 in the formula (3.4); then the norm of Riemannian curvature |Rm| of shrinking
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gradient Ricci solitons must satisfy the Bochner-type inequality (3.5). From Lemma 3.1, we
obtain the ε regularity estimates for shrinking gradient Ricci solitons.

Theorem 3.2. Let (Mα, gα) be a sequence of compact gradient Ricci solitons satisfying the
conditions (1), (2) and (3) in the Theorem 1.1. Then there exist constants C17 and ε depending
only on C1, C2, C3 such that if∫

BαP (2r)
|Rm(gα)|

n
2 < ε, (3.19)

then

sup
BαP(

r
2 )

|Rm(gα)| ≤ C17

(
1 +

1

r2

)(∫
BαP (r)

|Rm(gα)|
n
2

) 2
n

. (3.20)

4. The proof of Theorem 1.1

In this section, firstly, we will show that we can extract a subsequence of Ricci solitons
(Mα, gα) which satisfy conditions (1), (2), (3) and (4) in Theorem 1.1, so that it converges to
an orbifold in a topological sense. This relies on the works by Anderson [1,2].

Let (M, g) be a Riemannian manifold, and let hM be the isoperimetric constant given by

hM = inf
S

(Vol(M))n

[min(Vol(M1),Vol(M2))]n−1 , (4.1)

where S varies over all closed hypersurfaces of M such that M\S = M1 ∪ M2. Croke shows
that hM is bounded below by a constant depending only on lower bounds for Ricci curvature
and volume, and an upper bound on the diameter. In particular, if Bx (r) is a geodesic ball of
radius r about x ∈ M and Sx (r) = ∂Bx (r), v(r) = Vol(Bx (r)), then it follows that (v′(r))n ≥

hMv(r)n−1, for v(r) < 1
2 Vol(M); integrating this inequality, one obtains v(r) ≥ n−nhMrn . On

the other hand, from the Bishop volume comparison theorem, we know that there must exist a
positive constant C18 depending only on the lower bounds of Ricci curvature and volume such
that

Vol(Bx (r)) <
1
2

Vol(M), when r < C18. (4.2)

So, we have

Vol(Bx (r)) ≥ C19rn, (4.3)

for r < C18, where C19 depends only on a lower bound for the isoperimetric constant. From
[23], the volume noncollapsing condition (4.3) and a lower bound for the isoperimetric constant
imply the following Sobolev inequality:(∫

Bx (r)
f

2n
n−2

) n−2
n

≤
1

C ′
s

∫
Bx (r)

|∇ f |
2, (4.4)

for every Lipschitz function f with compact support in Bx (r) and r ≤ C18. In fact, an upper
bound on the diameter, a lower bound of the Ricci curvature and the volume noncollapsing
condition imply a lower bound on the Sobolev constant C ′

s .
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Let ε be the constant of Theorem 3.2 which is determined by the bounds Ric(gα) ≥ −C1gα ,
diam(Mα, gα) ≤ C2, Vol(Mα, gα) ≤ C3 on (Mα, gα). We fix 0 < r < C18 and let {xαk } be a
maximal r

8 separated set in (Mα, gα). Thus the geodesic balls Bαxk
( r

16 ) are disjoint, and the balls
Bαxk
( r

4 ) form a cover of Mα . We let

Gr
α = ∪

{
Bαxk

(r

4

)
:

∫
Bαxk

(2r)
|Rm(gα)|

n
2 < ε

}
,

and

Br
α = ∪

{
Bαxk

(r

4

)
:

∫
Bαxk

(2r)
|Rm(gα)|

n
2 ≥ ε

}
.

Then Mα = Gr
α ∪ Br

α . From the volume noncollapsing condition (4.3) and Bishop–Gromov
volume estimates, we have a bound on the number of bad balls Qr

α in Br
α independent of α and

r , namely,

Qr
α ≤ C20, (4.5)

where C20 is positive constant depending only on the constants C1, C2, C3, C4 which are given
in Theorem 1.1.

Since Ricci solitons are the solutions for Ricci flow, Shi’s curvature estimates apply and
therefore, by the estimates (3.20),

sup
Gr
α

|∇
kRm(gα)| ≤

C21

rk+2 , (4.6)

where C21 depends only on C1, C2, C3. We also obtain

sup
Gr
α

|∇
kuα| ≤ C22(k), (4.7)

where C22(k) is a constant depending only on k, r , C1, C2, C3.
From the volume noncollapsing condition (4.3), small curvature estimates (Theorem 3.2),

and Shi’s curvature estimates (4.6), following Section 5 in [1], we can show that there is a
subsequence of (Mα, gα) that converges to (M∞, g∞) in the Hausdorff topology, and M∞ =

G ∪ {Pi }
Q
1 is a complete length space with a length function g∞, which restricts to a smooth

gradient Ricci soliton on G satisfying

g∞ − Ric(g∞) = ∇du∞, (4.8)

where u∞ is a C∞ limit of uα away from singular points. The points {Pi }
Q
1 are called the

curvature singularities of M∞, and the convergence is in C∞-topology outside the singularities.
Then, in a similar way to in Section 5 in [1], we can check that M∞ has the structure of an orbifold
with a finite number of curvature singularity points, each having a punctured neighborhood which
is diffeomorphic to a punctured cone on a spherical space form, and metric g∞ has a C0 extension
over every singularity point. So, we have proved the following proposition.

Proposition 4.1. Let (Mα, gα) be a sequence of compact gradient Ricci solitons satisfying the
conditions (1), (2), (3) and (4) in Theorem 1.1. There is a subsequence such that (Mα, gα)
converges to a compact orbifold (M∞, g∞) with finitely many singularities. Convergence is
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in C∞ topology outside those singularity points; g∞ is a smooth Ricci soliton outside those
singularities and has a C0 extension over every singularity point.

To finish the proof of Theorem 1.1 we still need to show that the limit metric g∞ on G can be
extended to an orbifold metric on M∞. More precisely, in an orbifold lifting around singular
points, in an appropriate gauge, the gradient Ricci soliton equation of g∞ can be smoothly
extended over the origin in a ball in Rn . At this stage, the regularity theory is not sufficient
to imply that g∞ is smooth. However, by Fatou’s lemma, we know that∫

M∞

|Rm(g∞)|
n
2 dv∞ < ∞. (4.9)

From the above inequality, we can obtain an upper bound for the norm of the curvature tensor
Rm(g∞) of the limit metric g∞.

Lemma 4.2. |Rm(g∞)|∞ is bounded uniformly on M∞\{Pi }
Q
1 .

We leave the proof of Lemma 4.2 to the next section. From the above, we know that each
singular point P ∈ M∞ has a neighborhood that is covered by a punctured ball Bn(r)\{0} ∈ Rn .
Our goal is to show that there exists a diffeomorphism φ of Bn(r)\{0} such that φ∗π∗(g∞)

extends to a smooth metric on Bn(r), where π is the covering map.
Using Lemma 4.2, and harmonic coordinates constructed in [12], in the same way as in

[4, Theorem 5.1], we can show that if r is sufficiently small, there is a diffeomorphism φ of
Bn(r)\{0} such that φ extends to a homeomorphism of Bn(r) and satisfies

(g∞)i j (x)− δi j = O(|x |
2),

∂k(g∞)i j (x) = O(|x |),
(4.10)

where we also denote the pulled back metric φ∗π∗(g∞) as g∞ for simplicity. This means that
there are some coordinates in a covering of a singular point of M∞ in which g∞ extends to a
C1,1-metric.

For our sequence of shrinking gradient Ricci solitons (Mα, gα), Lemma 2.3 tells us that every
potential function uα is a minimizer of W (gα, ·, 1

2 ) and therefore satisfies

4uα −
1
2
|∇uα|

2
+

1
2

R(gα)+ uα − n = µ

(
gα,

1
2

)
.

By 4uα = n − R(gα), we have

4uα = |∇uα|
2
− 2uα + n + 2µ

(
gα,

1
2

)
. (4.11)

Proposition 2.4 tells us that those µ(gα, 1
2 ) are bounded uniformly. So we can extract a

subsequence of a sequence of converging metrics gα such that

lim
α→∞

µ

(
gα,

1
2

)
= µ∞. (4.12)

Letting α → ∞ in (4.11) we get

4u∞ = |∇u∞|
2
− 2u∞ + n + 2µ∞, (4.13)
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away from those singular points Pi . On the other hand, from Lemma 2.2 and the soliton equation,
we have

sup
M∞\{Pi }

Q
1

|u∞|C2 ≤ C∗, (4.14)

for some uniform constant C∗. So, it is not hard to conclude that ∇u∞ extends to the origin in
the covering ball Bn(r). Moreover, u∞ ∈ C1,1(Bn(r)).

Using the harmonic coordinates for g∞ in Bn(r), we can write the soliton equation as follows:

4(gi j )+ · · · = ui j (4.15)

where the dots indicate lower order terms involving at most one derivative of gi j . Since g∞ ∈

C1,1(Bn(r)) and u∞ ∈ C1,1(Bn(r)), from (4.11) and (4.15), the standard elliptic regularity
theory implies that g∞ and u∞ must be smooth in Bn(r); that is, g∞ is a gradient soliton metric
in an orbifold sense.

When n is odd, we can use a discussion like that in [1, Section 5] to conclude that there are
no curvature singularities in M∞. We argue by contradiction. Suppose that there exist curvature
singularities in M∞. For each curvature singularity P ∈ {Pi }

Q
1 ⊂ M∞, there is a sequence

xα ∈ Mα , such that xα → P and infr>0 sup{|Rmα(x)|; x ∈ Bxα (r) ⊂ Mα} → ∞, as
α → ∞. Since the curvature of Mα remains bounded in a bounded distance away from xα ,
we may assume that xα realizes the maximum Rα of |Rmα| on Bxα (r0) for some small r0. Now

consider the pointed connected Riemannian manifolds Vα = (Bxα , xα, R
1
2
α gα). We note that the

curvature of Vα is uniformly bounded, |RmVα (xα)| = 1, and |Ric(Vα)|(x) → 0 for any point
x ∈ Vα as α → ∞ (since, in Lemma 2.2, we have proved that the Ricci curvature of Mα is
bounded uniformly). Similarly,

∫
Vα

|Rm|
n
2 ≤ C and the Sobolev constants for Vα are uniformly

bounded below, since this is true for Mα itself. As in section 3 in [1], we can prove that there is
a subsequence of Vα that converges, in C∞ topology on compact sets, to a complete connected
Riemannian manifold V satisfying

RicV = 0,

Vol(B(r))
rn ≥ C ′,∫

V
|Rm|

n
2 ≤ C,

(4.16)

and

|Rm|(x0) = 1, for some x0 ∈ V . (4.17)

A complete connected Riemannian manifold satisfying (4.16) is called an EALE (Einstein,
asymptotically locally Euclidean) space. Theorem 3.5 in [1] had shown that in odd dimensions,
nontrivial, i.e., nonflat, EALE spaces do not exist, so we get the contradiction by (4.17). So it
follows that M∞ is a smooth manifold and the convergence Mα → M∞ is smooth.

5. Curvature bounds of the limiting metric

In this section, we will give curvature bounds for the limiting metric g∞. If n = 4, the
approach that we will use to prove Lemma 4.2 is based on Uhlenbeck’s [22, Theorem 4.1] idea
for treating the isolated singularities for the Yang–Mills equation. If n ≥ 5, using the Sobolev
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bounds in Bg∞
(P, r)\{P}, we can verify that the basic methods of Sibner [19, Lemma 2.1,

Proposition 2.4] remain valid here also. We should point out that Chao and Sesum [6] had used
the same idea for treating the Kähler–Ricci soliton case. We include a sketched proof here.

Let P be a singular point of M∞, r(x) = distg∞
(x, P), and Bg∞

(P, r) = {x ∈ M∞ | r(x) <
r}. Since the Sobolev inequality (4.4) with a uniform Sobolev constant C ′

s for all gα , we have the
following Sobolev inequality:(∫

Bg∞ (P,r)
f

2n
n−2

) n−2
n

≤
1

C ′
s

∫
Bg∞ (P,r)

|∇ f |
2, (5.1)

for every Lipschitz function f with compact support in Bg∞
(P, r)\{P} and r ≤ C18.

Remark 5.1. By Fatou’s lemma and arguments similar to those in [4], we can get that (5.1) also
holds for compact supported functions f ∈ W 1,2(Bg∞

(P, r)).

From (3.4), we also have

4|Rm|
2

≥ (2 − θ)|∇|Rm||
2
− C(θ)|Rm|

2
− C14|Rm|

3, (5.2)

on M∞\{Pi }
Q
1 . By (4.9), we can decrease r if necessary so that

∫
g∞(P,r)

|Rm|
n
2 dVg∞

< ε, where
ε is chosen to be small. By the Sobolev inequality (5.1) and Lemma 3.1, we have

|Rm(g∞)|(x) ≤
C

r(x)2

{∫
Bg∞ (P,2r(x))

|Rm(g∞)|
n
2 dVg∞

} 2
n

, (5.3)

for some uniform constant C . From Shi’s curvature estimates (4.6), letting α → ∞ we get

|∇
kRm(g∞)|(x) ≤

C(r(x))

r(x)k+2 , (5.4)

for all x ∈ M∞\{Pi }
Q
1 , where C(r(x)) → 0 as r(x) → 0.

(a) When n = 4. Let U be a small neighborhood of P; recall that U\{P} is covered
by Bn(r)\{0} ⊂ R4 and π∗g∞ extends to a C0 metric on the ball Bn(r), where π is the
covering map. By estimates (5.3) and (5.4), as in [20, Section 4] we can find a gauge φ (i.e.,
a diffeomorphism on Bn(r)(r)) such that

|dgi j |(x) ≤
ε(r(x))

r(x)
,∣∣∣∣d(∂gi j

∂xk

)∣∣∣∣ (x) ≤
ε(r(x))

r(x)2
,∣∣∣∣∣d

(
∂2gi j

∂xk∂xl

)∣∣∣∣∣ (x) ≤
ε(r(x))

r(x)3
,

(5.5)

in Br
\{0}, where d is the exterior differential on R4 and | · | is the norm with respect to the

Euclidean metric, and g stands for φ∗π∗g∞.
Let D = d + A be a connection uniquely associated with the metric g on Bn(r)\{0}, where

A is the connection form. As in [22, Section 4] or [20, Section 4], we constructed the broken
Hodge gauges. We break the domain up into annuli:
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Ul = {x : 2−l−1r ≤ r(x) ≤ 2−lr},

Sl = {x : r(x) = 2−lr},
(5.6)

for l = 0, 1, 2, . . ..

Definition 5.2. A broken Hodge gauge for a connection D in a bundle E over ∪
∞

l=0 Ul is a gauge
related continuously to the original gauge in which D = d + A and A(l) = A|Ul have the
following properties for all l:

d∗ A(l) = 0 in Ul ,

Aψ (l)|Sl = Aψ (l − 1)|Sl ,

d∗
ψ Aψ (l) = 0 on Sl and Sl+1,∫
Sl

Ar (l) =

∫
Sl+1

Ar (l) = 0.

As in [22, Theorem 4.6] or [20, Section 4], from estimate (5.3), we have the following lemma.

Lemma 5.3. Let D be the unique connection associated with the metric g, for small r; then there
exists a broken Hodge gauge in Bn(r)\{0} = ∪

∞

l=0 Ul satisfying

|A(l)|g(x) ≤ C2−lr sup
Ul

|Rm|g ≤ C2l+1r−1,∫
Ul

|A(l)|2g dVg ≤ C2−2lr2
∫

Ul

|Rm|
2
g dVg.

(5.7)

By direct calculation, we have

∞∑
l=0

∫
Ul

|Rm|
2
g dVg = −

∞∑
l=0

∫
Ul

〈A(l), D∗Rm〉 −

∞∑
l=0

∫
Ul

〈[A(l), A(l)],Rm〉

+

∫
S0

〈Aψ (0),Rmrψ 〉 − lim
l→∞

∫
Sl+1

〈Aψ (l),Rmrψ 〉. (5.8)

From (5.3) and (5.7), it is not hard to check that liml→∞

∫
Sl+1

〈Aψ (l),Rmrψ 〉 = 0. On the
other hand, we know that the limit metric g∞ satisfies the Ricci soliton equation

g − Ric = ∇du, (5.9)

where u = φ∗π∗u∞. We have

D∗Rmi jk = Ri jkm,m = Rki, j − Rk j,i = uk, j i − uk,i j = Ri jkl g
lmum (5.10)

where we have used the second Bianchi identity and the Ricci identity. By Lemma 2.2, we know
that |∇u| is bounded uniformly, so we have

∫
Ul

〈A(l), D∗Rm〉 ≤

(∫
Ul

|A(l)|2
) 1

2
(∫

Ul

|D∗Rm|
2
) 1

2

≤ C2−lr
∫

Ul

|Rm|
2
g. (5.11)
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From the estimate (5.3), we get∣∣∣∣∫
Ul

〈[A(l), A(l)],Rm〉

∣∣∣∣ ≤ sup
Ul

|Rm|g

∫
Ul

|A(l)|2

≤ C

(∫
Bg∞ (P,2−l+1r)

|Rm(g∞)|
2

) 1
2 ∫

Ul

|Rm|
2
g. (5.12)

Similarly to in the proof of Corollary 2.6 in [22], with a small modification just like that in [20,
Section 4], we can find a decreasing function ε1(r) with limr→0 ε1(r) = 0 such that∫

S0

|Aψ (0)|2g dVg ≤ (2 − ε(r))−2r2
∫

S0

|Rmψψ |
2
gdVg. (5.13)

From (5.8) and (5.11)–(5.13), we have∫
B(r)

|Rm|
2
g dVg ≤

r

2(2 − ε1(r))(1 − ε2(r))

∫
∂B(r)

|Rm|
2
g dVg

≤
r

4

(
1 +

δ

2

)∫
∂B(r)

|Rm|
2
g dVg, (5.14)

whenever r is sufficiently small and δ ∈ (0, 1), where limr→0 ε2(r) = 0. Then it is standard to
conclude from the above inequality that [20, Section 4]

|Rm|g∞
(x) ≤

C

r(x)δ
, (5.15)

for x ∈ Bg∞
(P, r), for sufficiently small r and some δ ∈ (0, 1), where C is a uniform constant.

Recall that g∞ extends the C0 metric on the covering ball; from (5.15), we can show that there
exists a q > 4 such that∫

Bg∞ (P,r)
|Rm(g∞)|

q < ∞. (5.16)

For further consideration, we need the following lemma which is similar to Lemma 2.1 in
[19], and had been proved in [6].

Lemma 5.4. Let f ≥ 0 be a smooth function in M∞\{Pi }
Q
1 and satisfying (3.5), with f ∈ L

n
2 .

If f ∈ L
2nq0
n−2 ∩ L2q , q0 >

1
2 , then ∇ f q

∈ L2 and, for sufficiently small r , we have∫
Bg∞ (Pi ,r)

η2
|∇ f q

|
2

≤

∫
Bg∞ (Pi ,r)

|∇η|2 f 2q , (5.17)

for all η ∈ Bg∞
(Pi , r), where C is a uniform constant.

(b) If n > 4, let f = |Rm(g∞)| ∈ L
n
2 ; we can choose q0 = 1 and q =

n
4 . From (5.2), we know

that f = |Rm(g∞)| ∈ L
n
2 satisfies (3.5); applying Lemma 5.4 to f , we find that ∇ f

n
4 ∈ L2. By

Remark 5.1, we can apply the Sobolev inequality (5.1) to f
n
4 to conclude that

|Rm(g∞)| ∈ L p, (5.18)

with p =
n
2

n
n−2 >

n
2 .
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From the above we know that |Rm(g∞)| ∈ L p for some p > n
2 in both the cases n = 4 and

n > 4. In particular, since Vol(M∞, g∞) < ∞, by (5.16), (5.18) and using the Hölder inequality,
we have |Rm(g∞)| ∈ L p for p ∈ (0, n

2
n

n−2 ]. Take q0 = 1, q ∈ (0, n
4

n
n−2 ] and repeatedly

apply Lemma 5.4 to get ∇|Rmg∞
|
q

∈ L2. By the Sobolev inequality (5.1) and using the Hölder
inequality again, we have |Rm(g∞)| ∈ L p for p ∈ (0, n

2 (
n

n−2 )
2
]. If we keep on repeating this,

at the k-th step we have ∇|Rm(g∞)|
q

∈ L2 for q ∈ (0, n
4 (

n
n−2 )

k
] and |Rm(g∞)| ∈ L p for

p ∈ (0, n
2 (

n
n−2 )

k+1
]. Since ( n

n−2 )
k

→ ∞ as k → ∞, we have

|Rm(g∞)| ∈ L p, (5.19)

and

∇|Rm(g∞)|
p

∈ L2, for all p. (5.20)

By (5.19) and (5.20), combining Remark 5.1 and Lemma 5.4, for sufficiently small r and any
p we have(∫

Bg∞ (P,r)
|η|Rmg∞

|
p
|

2n
n−2

) n−2
n

≤
1

C ′
s

∫
Bg∞ (P,r)

|∇(η|Rm(g∞)|
p)|2

≤ C
∫

Bg∞ (P,r)
|∇η|2|Rm(g∞)|

2p, (5.21)

with a uniform constant C , where η is any cut-off function with compact support in Bg∞
(P, r).

Then, using Moser’s iteration argument as in the proof of Lemma 3.1, we get

sup
Bg∞(P, r

2 )
|Rm(g∞)| ≤

C

r2 . (5.22)

So, we get the curvature bound for the limiting metric g∞ and we have finished the proof of
Lemma 4.2.
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